Welcome

Thank you for your purchase! If you have any questions that you feel should have been in this document,
please feel free to contact us at support@wicombit.com

e Requirements

e Setting up the Backend
e Setting up the App

e Customization

e Build Standalone App

e Copyright & Credits

e Technical Support

Requirements

System Requirements

1. Node.js. Download Here

2. Yarn. Download Here

3. React Native CLI. Install using npm install -g react-native-cli

4. Expo CLI. Install using npm install -g expo-cli

App Requirements
1. Firebase Account (Required) Create Here

2. OneSignal (Optional) Create Here

Backend Requirements
1. PHP: Hosting PHP 8.0.

2. Extensions: cURL, OpenSSL, mbstring, MySQLi, imagecreate

3. Database: MySQL 5.7.3+ or MariaDB.

B

Server: Apache

https://nodejs.org/en/download/
https://yarnpkg.com/en/
https://firebase.com/
https://dashboard.onesignal.com/login?redirect_uri=/apps

Setting up the Backend

Backend Setup

1. Unzip the downloaded package folder and locate the "Backend" folder.

2. Copy the entire "Backend" folder content and place it into the root directory of your server. This is
usually the "public_html" folder for shared hosting or the "www" folder for a local server.

3. Open your phpMyAdmin control panel and select your current database. If you do not have a
database yet, you can create one and name it.

4. Once you have selected your database, click on the "Import" tab located at the top of the page.
In the "File to import" section, click on the "Choose File" button and select the "Database.sql" file
from the unzipped "Backend" folder and click on the "Go" button to import the database.

6. After the import is completed, locate the "admin" folder open the “config.php” file using a text
editor.

7. Change the following details to match your database credentials:

$database = array(

"host' => 'DATABASE_HOST HERE',
‘db' => 'DATABASE NAME HERE',
‘user' => 'DATABASE_USER HERE',

'pass' => 'DATABASE_PASSWORD HERE'
)3

8. Use the default login details to access the admin panel:
Username: admin@admin.com

Password: 123456

Firebase Setup
1. Create a Firebase project
Before you can use Firebase in your project, you need to create a Firebase project. You can do this
by going to the Firebase website and clicking on "Get Started" or "Go to Console". Then, follow the

prompts to create a new project.

2. Get your Firebase URL. Once you have created a Firebase project, you will be redirected to the
Firebase console. On the project overview page, you will see a "Project settings" button in the top

right corner. Click on it.

3. On the project settings page, you will see a section called "Your apps". Find the app you want to add

the Firebase URL to and click on the "Web" icon (the one with "</>"). A pop-up will appear with your

Firebase configuration. In this configuration, you will see the Firebase URL under the
"databaseURL" key. Copy this URL. In your project, open the “admin/config.php”. Replace
"YOUR_FIREBASE_URL_HERE" with the URL you copied in the previous step. Make sure to

enclose the URL in single quotes (").

define (FIREBASE_URL, 'YOUR_FIREBASE_URL_HERE');

Setting up the App

1. Firebase Setup

To add Firebase to your app, you'll need a Firebase project and a short snippet of initialization code that has

a few details about your project.

Sign in to Firebase.

Go to https://console.firebase.google.com and create a project.

1

2

3. Go to "Authentication/Sign-in method" and enable "Email/Password".

4. Go to "Project Settings", add a Web app to your project. Follow the assistant, and copy Firebase
configuration code and paste it on src/config/ConfigFirebase.js.

5. Open htips://console.firebase.google.com/project/ /settings/serviceaccounts/adminsdk and select

the project you want to generate a private key file for.
6. Click Generate New Private Key, then confirm by clicking Generate Key and download the
generated google-service-account.json file and place it in the /classes/firebase folder of your

server.

apiKey: ’

authDomain: ,
databaseURL: "",

projectId: ,

storageBucket: 5

messagingSenderId: ,
appId: ""

2. OneSignal Setup

1. First, you need to create an Onesignal account if you haven't already.

2. Create an app: Once you're signed in to your Onesignal account, click on the "Add App" button and
select "Create a new mobile & web app".

3. Setup your app platform: Select the platform for your app (iOS, Android, or web) and enter the app
name. Select "Next" to continue.

4. Configure your app: Fill in the necessary information for your app. Once you're done, click on "Save"
and then "Next".

5. On the next page, you will see the instructions for adding the Onesignal SDK to your app. Follow
these instructions carefully as they will vary depending on your platform and development

environment. Copy OneSignal API code and paste it on src/config/ConfigApp.js.

https://console.firebase.google.com
https://console.firebase.google.com/project/_/settings/serviceaccounts/adminsdk

Customization

1. Change App Color

Open src/config/ColorsApp.js and update this value.

const ColorsApp = {
PRIMARY: "#2472d4",
SECOND: "#2472d4",

};

2. Change Theme Mode

Open src/config/ConfigApp.js and update this value to “light” or “dark”.

const ConfigApp = {
THEMEMODE: "1light", // light or dark

3. Change App Name

Open app-json and replace this value:

{
"eXpo" : {
"name": "Your App Name"

}
}

4. Change Texts

Open src/languages/en.json and replace these values:

{
STO: "Home",
ST1: "Sign In",
ST2: "Register",
ST3: "Favorites",
}

5. Change App Icon and SplashScreen

You just have to replace the images located in the assets folder.

1. Testing App (EXPO GO)

If you plan on using Admob, please choose the second option. Admob contains
native code that is not compatible with Expo GO, and using it will result in an error.

1. Navigate to your project directory: Once the project is created, navigate to the project directory
by running the following command.

cd [project name]

2. Start the development server: Run the following command to start the development server.
npx expo start
This will start the Expo CLI server and a browser window will open with a QR code.

3. Install the Expo app on your device: To run your app on your device, you need to install the
Expo app. You can download it from the App Store for IOS or Google Play Store for Android.

4. Scan the QR code: Open the Expo app on your device and scan the QR code from the
browser window. This will build and run your app on your device.

5. Test your app: You can now test your app on your device. Any changes you make to your code
will automatically be updated on your device.
2. Testing App (Development Client)

Android
Run the following command to get the Android development build started on EAS:
eas build --profile development --platform android
After that, Expo will start your build, and in a few minutes, your APK will be ready to install. You can
either scan a QR code, go to a URL to download the APK, or manually download and send the APK
to your Android device.
iOS
Run the following command to get the iOS development build started on EAS:
eas build --profile development --platform ios
Just like with the Android build, this command will present you with a few prompts before the build
starts. These prompts will ask for the bundle identifier, followed by a few questions that are needed
for code signing. The code signing prompts will ask if you have an existing certificate and
provisioning profile that you’d like to use for signing. If not, you can enter your Apple ID credentials,

and EAS will create a provisioning profile for you, as well as register your devices to the provisioning
profile.

Once you've entered this information, the build will start. When it’s finished, you’ll receive
instructions for installing the build on your device.
Native app testing

Now that Expo has built our native apps for us, we can begin testing our React Native app. We'll do
this by running a local development server that our native apps can connect to. That command is:

expo start --dev-client

When you open either the Android or iOS app, you’ll be presented with a screen to connect to the
local development server. Your phone may find the local development server automatically

Build Standalone App

Please follow this document for detail clarify how to build the standalone app and submit to App Store and
Google Play:https://docs.expo.dev/archive/classic-updates/building-standalone-apps/

Open the App.json and add config for package id:

"ios": {

"supportsTablet": true,

"bundleIdentifier": "com.yourcompany.appname"
}
"android": {

"package": "com.yourcompany.appname"

}

https://docs.expo.dev/archive/classic-updates/building-standalone-apps/

Copyright & Credits

Resources Used

React Native
Expo.io

Firebase

React Native Paper

OneSignal

Technical Support

Thank you again for purchasing this product. If you have any questions that are beyond the scope of this

help file, please feel free to send an email to support@wicombit.com.

Email: support@wicombit.com

mailto:support@wicombit.com

